يوردمان

تحليل مكانيكـبُردارى

علم مكانيكى علمى است كه شرايط سكون و حركت اجسام تحت تأثير نيرو را بررسى مى كند.

در اين كتاب از حوزههاى فوق، با مكانيك اجسام صلب ساكن (استاتيك) آشنا مى شويم.

محمد كرجى از نوابغ مهندسى ايران در بيش از هزار سال پيش بوده است است

ا- فضا (Space):

r- ز- زمان (Time):
فاصلئ بين وقوع دو رويداد فيزيكى زمان نام دارد و واحد اندازه گَيرى آن ثانيه (S) مى باشد.
r- جرم (Mass):

F
تأثير يكى جسم بر جسم ديگَر را نيرو مىناميمر و واحد اندازه اين تأثير مىتواند تغيير در حركت، تغيير شكل و يا چرخش اجسام باشد

در علم مكانيك به منظور سادتر شدن حل مسائل، فرضياتى به شرح زير در نظر كرفته مىشود.
ا- جسم صلب (Rigid Body):
جسمى است كه در اثر اعمال نيرو تغيير شكل ندهد.
r- نقطه مادى (Particle):
 مادى در نظـــر كرفت. - 1

مكانيك اجسام صلب بر اساس قوانين نيوتن بهشرح زير استوار است:
ا- قانون اول نيوتن:
 اكر جسم ساكن باشد تا ابد ساكن باقى مى ماند.
(اكر در حال حركت باشد به حركت يكنواخت و مستقيمالخط خود ادامه مىدهد.
ץ-

$$
\begin{equation*}
\mathrm{F}=\mathrm{m} \cdot \mathrm{a} \tag{1}
\end{equation*}
$$

در اين رابطه:
N مجموع نيروهاى وارد بر جسم بر حسب F
kg جرم جسم بر حسبر $\mathbf{~ m}$
a شتاب ايجاد شده در جسم برحسب
يك مورد خاص و بسيار مـمم اين قانون وزن اجسام است كه به صورت زير تعريف مى شود: تعريف وزن (Weight):
 رابطــٔ (1) دارد.

$$
\mathrm{w}=\mathrm{m} . \mathrm{g}
$$

w : وزن جسم بر حسب نيوتن
kg جرم جسم بر حسب : m
g تذكر:
واحد ديحر وزن، كيلوكَرمنيرو (kgf) مى

در ايـن كتــاب از ســامانه بين المللـى واحدهـاى اندازه گيــرى (SI) اسـتفاده مى كنـيـم كــه در اكثـر كشـورهها نيـز پذيرفته شــده اسـت.

پيشوندهاى واحدهاى اندازهگيرى:

 واحدهــاى اندازه گيـرى قـرار مى گیــــرى.
 عنـوان مثـال مى تـوان KFV/D kN KFD
-بيـن پيشـوند و واحــد اندازه گيـرى مـورد نظـر از هيـعج علامتـى اسـتفاده نمى شـود امـا بيـن دو واحــد اندازه گيـرى مختلـف هـر علامتـى نظيـر × و / مى توانــد وجـود داشـته باشــد بــه طـور مثال:
 مثال: V/ F × $10^{-\infty} \mathbf{~ M N ~}$

$$
V / \Delta \times 10^{-\Delta} \times 10^{\varphi}=V \Delta \quad N
$$

جدول (1) يششوندهاى آحاد اندازه كيرى

نام پيشوند	علمت اختصارى	مقار عددى	شكل توانى
پيكو	p	$\bigcirc / \bigcirc \circ \bigcirc \circ \bigcirc \circ \circ \circ \circ \circ \circ 1$	10^{-14}
نانو	n	$0 / 0000000001$	10^{-9}
مـيكرو	$\boldsymbol{\mu}$	\bigcirc - ० ० ० ० ०)	10^{-9}
ميلى	m	$0 / 001$	10^{-r}
كيلو	K	$1,00 \circ$	10^{r}
\%	M	1, ○○○, ○○○	10^{8}
گی\%	G	1,0००,०००,०००	10^{9}
1	T	।, ○○○, ○○○, ○○○, ○○○	10^{14}

$$
1 \text { - ه - كميتهاى فيزيكى }
$$

بهطور كلى كميتهاى فيزيكى به دو دستأ اصلى و فرعى تقسيمبندى مى شوند. كميت هــاى اصلــى: بـه كميتهايـى گَفته مى شـود كــه مسـتقل اند و در ايـن پودمـان عبارتاند از
طـول (L)، جـرم (M) و زمان (T).

كميت هــاى فرعــى: بــه كميتهايـى گَفته مى شـود كه وابسـتـه بــه كميتهـــاى اصلى هســتند و از (آنهـا ناشـى مى شـــوند. مانند نيرو، كَشــتاور نيرو، ســرعت، كار، انــرزى و ...

در يك تقسيمبندى ديگر كميتهاى فيزيكى به دو دستأ اسكالر و بردارى تقسيم مى شوند.
كميت هــاى عــددى يا اســـكالر: كميتهايى هسـتـند كه فقـط داراى انــدازه يا مقـدار مى باشــند؛ مانند

 | ماننـد: بردارهـاى نيـرو، گششـتاور، سـرعت، شــتاب و جابهجايـىى.
 فرعـى بر حسـب ديمانسـيون كميتهــاى اصلى تعريــف مى گر رند. ديمانسيون طول را به L و ديمانسيون جرم را با M و ديمانسيون زمان را با T C ر نشان مى دهند.
 صـورت F= MLT ${ }^{-r}$ نمايـش مىدهند.

هــر بـردار به صورت يـــ پییان بـا طولى متناسـب با مقدار آن ترسـيم مى شــود
 مقــدار جهت و راســتاى نشـان داده شــده ترســيم شده است. شكل

زاويه امتداد هر بردار، با يك امتداد مبنا كه معمولا امتدادهاى X X X است، مشخص مى شود.

ا- بردار لغزان
بردارى است كه اگر در راستاى خود جابهجا شود، اثر آن بر جسم تغيير ننمايد. همانند نيروى F در شكل (ب)

r- بر ار ثابت

شكل

جهـت بـه پــاى او وارد مى آيد متفاوت اسـت.
r - بر دار هاى همسنـَ
 $\overrightarrow{\text { ه }}$ هم سـنـگ اند.

F - بر بارهاى زوج
 زوج مىناميـهم. در شـكل (ه) بردارهـاى

ه- - بر دار هاى مخخالف

مخالف گويند. (شكل 9)
§- بردار يكه (واحد)
 يكـه يــا واحــد مى ناميمه.
 (V) را بـا
 نيروى و واحد اندازهگيرى نيرو، نيوتن (N) است و مطابق قانون دوم نيوتن به صورت زير تعريف مى شود:

شیل
$\mathrm{F}=\mathrm{m} . \mathrm{a}$
$1 \mathrm{~N}=\left\lvert\, \mathrm{kg} \times 1 \frac{\mathrm{~m}}{\mathrm{~s}^{r}}\right.$

تعريف نيوتن با استفاده از قانون دوم نيوتن

 ايجـاد نمايد.

- 1

$$
\overrightarrow{\mathrm{V}} \quad: \quad \mathrm{C}
$$

V :V اندازه يا مقدار بردار V

- ا-

جمع و تفريق بردارها به دو روش ا- ترسيمى r- آ محاسباتى انجام مى شود.
|-1-1 - - - روش ترسيمى
 ترسـيمى جمع و تفريق بردارها شـامل سـه روش زير مى باشـــد: ب)

شكل 9

(b)

A 11 شكل

شكل

الف) روش مثلث
دو بـردار و
بـراى بهدسـت آوردن مجموع آن هــا يعنى صـورت زيـر عمــل مى كنيمه:

ترســيم مى شود
 مى شـود

مىشـود: شـكل (10)

$$
\begin{equation*}
\overrightarrow{\mathrm{R}}=\overrightarrow{\mathrm{P}}+\overrightarrow{\mathrm{Q}} \tag{}
\end{equation*}
$$

> ب) روش متوازى الاضلاع

دو بـردار و و

مىنمائيـم: شـكل (IT)

و
r) از انتهـاى بـردار
ترسـيم مى شـود (خـط (d)

ک) از انتهـاى بـردار
 O'
 مجمـوع دو بـردار

$$
R^{r}=P^{r}+Q^{r}+r P Q \cos O
$$

$$
R=\sqrt{P^{r}+Q^{r}+r P Q \cos O}
$$

شكل
ج) روش چندضلعى
در ايـن روش بــه منظـور ترســيم مجمـوع چنـــد بردار
بــود. شـكل (If)

- هـر كَاه انتهـاى آخريـن بـردار بـر ابتـداى بـردار اول منطبـق گردد (يك چندضلعى بسـته تشـكيل شـود)،

$$
\begin{equation*}
\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{A}}+(-\overrightarrow{\mathrm{B}}) \tag{D}
\end{equation*}
$$ امكان پذيـر اسـتـ. يعنى:

$$
\begin{array}{r}
\vec{B}, \vec{A} \text { تفاضل بردارها }+ \text { روش مثلى }
\end{array}
$$

$$
\begin{aligned}
& \text { B }, \vec{A} \text { تفاضل بردارهاى } \\
& \text { به روش متوازیالاضلاع }
\end{aligned}
$$

 تا آخريـن بـردار ادامه داد.

$$
\begin{aligned}
& \text { در شكل زير حاصل بردارهاى } \\
& \text { (ابعاد شبكه برابر ه ا واحد است) }
\end{aligned}
$$

图

مجموع دو بردار به روش متوازى الاضلاع

تفاضل دو بردار به روش مثلث

تفاضل دو بردار به روش متوازى الاضلاع

 () ا) از انتهـاى بـردار Or \mathbf{O}_{r} (Y بردار

 بـا نماد

مسـائل ايسـتايى دارد.

IT

1 - - 1 - تجزيهٔ يكى بردار به مؤلفههاى متعامد آن در دستكاه مختصات دكارتى به روش
y

شكل AV

مطابـق شـكل (IV) بـردار $\overrightarrow{\text { (IV }}$ بـه محـور X X X
 مطابـق مراحـل ســه گانه در بخــش (1) (1-9) عمل كنيم،

$$
\begin{equation*}
\sin \theta=\frac{\mathrm{R}_{\mathrm{y}}}{\mathrm{R}} \Rightarrow \quad \mathrm{R}_{\mathrm{y}}=\mathrm{R} \cdot \sin \theta \tag{9}
\end{equation*}
$$

نيـروى F مطابـق شــكل بـر ميخـى وارد مى شـود. مطلوب|سـت تجزيــه ايـن نيـرو روى محورهایى X X y

$$
\begin{aligned}
& \text { انـدازه يــا مقـدار مؤلفههـاى }
\end{aligned}
$$

$$
\begin{aligned}
& \text { شـكل زيـر محاسـبـه مى شــوند: } \\
& \cos \theta=\frac{\mathrm{R}_{\mathrm{x}}}{\mathrm{R}} \Rightarrow \quad \mathrm{R}_{\mathrm{x}}=\mathrm{R} \cdot \cos \theta
\end{aligned}
$$

شكل 19
 يكديگـر عمـود بـوده و بردارهـا بـه ترتيـب بـا
 رابطـــُٔ (ه) تعريـف مى شـود:

$$
\begin{equation*}
\vec{R}=R_{x} \vec{i}+R_{y} \vec{j} \tag{V}
\end{equation*}
$$

مؤلفئ $\mathbf{R}_{\mathbf{y}}$

حرم: بردارى بردار F در شكل (مثال ؟) را بنويسيد. حل:
فرم بردارى بردار با توجه به نتايج مثال بّ داريم:

 بـه صورت زيـر تعييـن نمود:

$$
\begin{array}{ll}
\mathrm{R}=\sqrt{\mathrm{R}_{\mathrm{x}}{ }^{r}+\mathrm{R}_{\mathrm{y}}{ }^{r}} & \text { (^) } \\
\theta=\tan ^{-1}\left|\frac{\mathrm{R}_{\mathrm{y}}}{\mathrm{R}_{\mathrm{x}}}\right| & \text { (9) } \tag{9}\\
\text { مقدار (اندازه) بردار } \mathbf{R} \text { (9) نسبت به محور } \mathbf{R} \text { هاويه بردار }
\end{array}
$$

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{x}}=\Lambda 99 / \circ \mathrm{rN} \\
& \mathrm{~F}_{\mathrm{y}}=\Delta \circ \circ \mathrm{N} \\
& \overrightarrow{\mathrm{~F}}=\Lambda 99 / \circ \mathrm{ri}+\Delta \circ \circ \overrightarrow{\mathrm{j}}
\end{aligned}
$$

بردار

$$
\begin{aligned}
& \mathrm{F}=\sqrt{\mathrm{F}_{\mathrm{x}}^{r}+\mathrm{F}_{\mathrm{y}}{ }^{r}} \Rightarrow \mathrm{~F}=\sqrt{\mu^{r}+{r^{r}}^{r}} \Rightarrow \mathrm{F=} \mathrm{\Delta} \\
& \theta=\tan ^{-1}\left|\frac{\mathrm{~F}_{\mathrm{y}}}{\mathrm{~F}_{\mathrm{x}}}\right| \Rightarrow \theta=\tan ^{-1}\left|\frac{r}{r}\right| \Rightarrow \theta=\Delta r / 1 r^{\circ}
\end{aligned}
$$

بردارهاى زير را ترسيم نموده و اندازه و زاوئه امتداد هر يك را نسبت به محورهاى X و y تعيين كنيد.

$$
\begin{aligned}
& \overrightarrow{\mathrm{F}}=-r \overrightarrow{\mathrm{i}}+r \overrightarrow{\mathrm{j}} \\
& \overrightarrow{\mathrm{P}}=-\Delta \overrightarrow{\mathrm{i}} \\
& \overrightarrow{\mathrm{~T}}=r / \Delta \overrightarrow{\mathrm{j}} \\
& \overrightarrow{\mathrm{Q}}=-r \overrightarrow{\mathrm{i}}-r \overrightarrow{\mathrm{j}}
\end{aligned}
$$

فعاليت
 كاسیى

1

نيرو كميتى است بردارى كه مىتواند باعث تغيير در حركت، تغييرِ شكل و يا چرخش در اجسام گَردد.

شكر

متمركــز مىنامنـد. شـكل (Y)

شك

شـكل (TY)

(

 (مقاومـت مصالـح) بــه نيروهـاى داخلـى توجـه مى شــود.

1-1 - - بر آيند سامانههاى نيرويى وارد بر نقطه مادى به روش محاسباتى

شكل

- ا

براى محاسبه بر آيند نيروهاى همرراستا كافى است مقادير آن ها را با يكديگر جمع جبرى نماييم.

-

بـراى محاسـبه مقـدار برآينــد دو نيـروى متعامد مطابق شـكل (YFY-الف) با اسـتفاده از رابطه فيثاغورث و شـكل

شكل شr

$$
\mathrm{R}^{r}=\mathrm{F}_{1}^{r}+\mathrm{F}_{r}^{r} \Rightarrow \mathrm{R}=\sqrt{\mathrm{F}_{1}^{r}+\mathrm{F}_{r}^{r}}
$$

و براى محاسبه زاويه بر آيند با , Fمىتوان از رابطه تانزانت استفاده نمود:

$$
\begin{equation*}
\tan \theta=\frac{\text { ضلع مقابل ملعاور }}{\text { ضلع }} \tag{11}
\end{equation*}
$$

| ا

در اين سيسـتم شـرط لازم بسـته شـدن ســهضلعى نيروهاسـت، اما تفاوتى كه اين حالت با حالت متعامد دارد
 ترسـيمى و اسـتفاده از قانـون سـينوس ها و كســينوس ها براى حــل مثلثاتى كار آمــد خواهد بود.

شكل شז
$\mathrm{a}^{r}=\mathrm{b}^{r}+\mathrm{c}^{r}-r \mathrm{bc} \cos \mathrm{A}$
$\mathrm{b}^{r}=\mathrm{a}^{r}+\mathrm{c}^{r}-\mathrm{rac}^{r} \cos \mathrm{~B}$
$c^{r}=a^{r}+b^{r}-r a b \cos C$
$\mathrm{a}^{r}=\mathrm{b}^{r}+\mathrm{c}^{r}+r \mathrm{bc} \cos \gamma$

$\frac{a}{\sin \mathrm{~A}}=\frac{\mathrm{b}}{\sin \mathrm{B}}=\frac{c}{\sin \mathrm{C}}$
شكل 4 4

قانون كسينوس ها در مثلث
علائم:
a

A
 و امتـداد ضلع C.

قانون سينوس ها در مثلث علائم: A ، A ، b ؛ ؛ ضلع مقابل زاويأ B، C ألع مقابل زاويأ C C

دو نيـروى غيـر متعامــد بـر تنـــــــد درختـى مطابـق شـكل وارد مى شـوند. مطلـوب اسـتـ: الف) محاسبئ مقدار بر آيند. ب) محاسبئ زاوئه برا آيند با افق.

حــل: ابتــدا بـا اسـتفاده از قانـون متوازى الاضـلاع مقـدار و جهـت برآينــد را بـه صـورت ترسـيمى تعييـن
 افـق محاسـبـه مى كنيـهم.

الف- با استفاده از قانون كسينوسها داريهم:
$\mathrm{A}=110-90=10_{0}^{\circ}$

$R=\sqrt{V \Lambda F \circ O O \circ}=Y \Lambda \circ \circ N$
ب- با استفاده از قانون سينوس ها داريم:
$\frac{r_{100}}{\sin 1 r_{0}}=\frac{1 r_{00}}{\sin B} \Rightarrow \sin B=\frac{r_{1} 000}{1 r_{0}} \times \sin 1 r_{0}$
$\sin B=0 / r v) \Rightarrow B=\sin ^{-1}(0 / r v 1)=r 1 / v \wedge \nu^{\circ}$

$$
\text { B= } \left.\sin ^{-1}(0 / r V)\right)=Y / V \wedge V^{\circ} \text { F, يا افق F زاوئ برآيند با }
$$

دو نيـرو مطابـق شـكل توسـط دو كابـل بـر يــــ
سـنگ معدنـى وارد مى شـود. مطلوباسـت: الف) نمايش بردارى برآيند ب) نمايش ترسيمى بردار بر آيند ج) محاسبئ اندازهٔ بردار برآيند د) محاسبأ زاويهٔ بر آيند با با افق ه) ترسيم مسير جابهجايى سنگ

 نمود. شـكل (Y (Y- ب)

شكل شr

گام دوم: نمايش بردارى تمامى نيروها بر حسب بردارهاى يكأى كام سوم: محاسبئ جمع جبرى نيروهاى همر راستا روى محور هاى X

$$
\begin{equation*}
\mathrm{R}_{\mathrm{x}}=\sum \mathrm{F}_{\mathrm{x}}, \quad \mathrm{R}_{\mathrm{y}}=\sum \mathrm{F}_{\mathrm{y}} \tag{IY}
\end{equation*}
$$

($\left.\sum \mathrm{F}_{\mathrm{x}}=\mathrm{F}_{1 \mathrm{x}}+\mathrm{F}_{\mathrm{rx}}+\mathrm{F}_{\mathrm{rx}}\right) \mathbf{x}$ x $\mathrm{X} \mathrm{F}_{\mathrm{x}}$ $\left(\sum \mathrm{F}_{\mathrm{y}}=\mathrm{F}_{\mathrm{ly}}+\mathrm{F}_{\mathrm{ry}}+\mathrm{F}_{\mathrm{ry}}\right) \mathbf{y}$ مجموع مؤلفههاى همر استا با محور

گام چهارم: نمايش بردارى بردار برآيند (R) مطابق رابطهٔ (I)

شكل

$$
\vec{R}=R_{x} \vec{i}+R_{y} \vec{j}
$$

گام پنجم: نمايش ترسيمى بردار برآيند مطابق شكل (Ү9)

$$
\mathrm{R}=\sqrt{\mathrm{R}_{\mathrm{x}}^{r}+\mathrm{R}_{\mathrm{y}}^{r}}
$$

فيثاغــور رث
 با استفاده از رابطئ تانزانت و با توجه به شكا بـل ترسيم شده

$$
\theta=\tan ^{-1}\left|\frac{\mathrm{R}_{\mathrm{y}}}{\mathrm{R}_{\mathrm{x}}}\right|
$$

در گام پنجم

كام دوم: - فرم بردارى هر بردار با توجه به شكل مقابل و جهت هر يك از مؤلفهها

$$
\overrightarrow{\mathrm{F}}_{1}=r \wedge \varepsilon \mu / \nu_{0} \overrightarrow{\mathrm{i}}-1 \circ r \Delta / r \Lambda \overrightarrow{\mathrm{j}}
$$

$$
\overrightarrow{\mathrm{F}}_{\mathrm{r}}=|V \varepsilon v / v v \overrightarrow{\mathrm{i}}+| V \varepsilon v / v v \overrightarrow{\mathrm{j}}
$$

گام سوم:

$\vec{R}=R_{x} \vec{i}+R_{y} \vec{j}$

- نمايش بردارى بردار برآيند
$\overrightarrow{\mathrm{R}}=\Delta g \mu \nu / \& V \overrightarrow{\mathrm{i}}+V \mu \Gamma / \& q \overrightarrow{\mathrm{j}}$

(
كام هفتم:
- محاسبأ زاوئُ برآيند با محور X ها به كمكى رابطئ (H-N) $\theta=\tan ^{-1}\left|\frac{R_{y}}{R_{x}}\right| \Rightarrow \theta=\tan ^{-1}\left|\frac{V \mu r / F q}{\Delta \xi r I / V_{0}}\right| \Rightarrow \theta=V / F 1^{\circ}$
o) مسير جابهجايى سنگ در راستاى بردار برآيند مطابق شكل زير خواهد بود.

> در شكل روبهرو مطلوباست:
> الف - محاسبؤ مقدار بر آيند نيروها ب - محاسبئ زاويأ بر آيند با افق ج - ترسيه بردار بر آيند د - نمايش بردارى بردار برآيند

$$
\begin{aligned}
& \vec{F}_{1}=r_{0} \circ \cos 90^{\circ} \vec{i}+r_{0} \circ \sin 90^{\circ} \vec{j}=10 \circ \overrightarrow{\mathrm{i}}+1 \gamma r / r \vec{j} \\
& \vec{F}_{r}=-1 \circ \circ \vec{i} \\
& \vec{F}_{r}=\varphi_{0} \circ \cos 90^{\circ} \vec{i}-\mu_{0} \circ \sin 40^{\circ} \vec{j}=r_{0} \circ \overrightarrow{\mathrm{i}}-\mu \varphi \varepsilon / \varphi \vec{j} \\
& R_{x}=\Sigma F_{x}=F_{1 x}+F_{r x}+F_{r x} \\
& R_{x}=\Sigma F_{x}=100-100+r_{0} \circ \Rightarrow R_{x}=r \circ \circ N \\
& \mathrm{R}_{\mathrm{y}}=\Sigma \mathrm{F}_{\mathrm{y}}=\mathrm{F}_{\mathrm{yy}}+\mathrm{F}_{\mathrm{ry}}+\mathrm{F}_{\mathrm{ry}} \\
& R_{y}=\Sigma F_{y}=\left|V \mu / r+0-\mu \varphi \varepsilon / \varphi \Rightarrow R_{y}=-\right| V \mu / r N \\
& R=\sqrt{R_{x}{ }^{r}+R_{y}^{r}}=\sqrt{r_{0} 0^{r}+(-I V r / r)^{r}} \Rightarrow \mathrm{R}=r \varsigma \varphi / \Delta V \mathrm{~N}
\end{aligned}
$$

¢

كاربرد ضرب بُر دارها

مى شــود. مطابق شكلهاى (ّ) و (؟) نيرو باعث پرخش در اجسام مى گَردد.

شكل

(a)

ش

شكل

در شـكل a-d F

 $\vec{M}=\vec{r} \times \vec{F}$
$|\mathrm{M}|=|\mathrm{F}| \cdot|\mathrm{r}| \cdot \sin \alpha$
M = F.d

 گشـتاور حـول نقطـه در نظـر گرفتــه مى شــود لــذا

عقربه هـاى سـاعت

قرارداد: در اين پودمان جهت پرخش عقربههاى ساعت مثبت فرض مىشود.

 كَشــاور هـر نيرو نســبت بــه آن نقطــهـ يعنى:

$$
\mathrm{M}_{\mathrm{O}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~F}_{\mathrm{i}} \mathrm{~d}_{\mathrm{i}}=\mathrm{F}_{1} \mathrm{~d}_{1}+\mathrm{F}_{\mathrm{r}} \mathrm{~d}_{\mathrm{r}}+\ldots+\mathrm{F}_{\mathrm{n}} \mathrm{~d}_{\mathrm{n}}
$$

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{F}}=\Delta \circ \circ \mathrm{N} \\
& \mathrm{~d}_{1}={ }^{\mathrm{r}} \mathrm{~m} \\
& \mathrm{~F}_{\mathrm{r}}=90 \circ \mathrm{~N} \\
& \mathrm{~d}_{\mathrm{r}}=\mathrm{rm} \\
& \mathrm{M}_{\mathrm{o}}=\mathrm{Fd}_{1}+\mathrm{F}_{\mathrm{r}} \mathrm{~d}_{\mathrm{r}} \\
& \mathrm{M}_{0}=\overparen{000 \times 4-400 \times r} \\
& M_{0}=+10 \circ \text { N.m }
\end{aligned}
$$

-

 كاربرد اين قضيه در مثال ((ّ) نشان داده شده است.

> كشتاور نيروى F را در شكل زير به دو روش حساب كنيد: الف) با استفاده از تعريف گشتاور ب) به كمك قضيه وارينون

rer
 8

ب) با استفاده از قضئه وارينون
 محاسـبه و بـا يكديگـر جمــع مىنمائيمه.

$$
\begin{aligned}
& F_{x}=F \cdot \cos \theta \Rightarrow F_{x}=900 \times \cos r 0^{\circ} \Rightarrow F_{x}=\Delta 19 / 91 \mathrm{~N} \\
& F_{y}=F \cdot \sin \theta \Rightarrow F_{y}=900 \times \sin r 0^{\circ} \Rightarrow F_{y}=r \circ \circ \mathrm{~N}
\end{aligned}
$$

هر گاه امتداد يك نيرو از يك نقطه بگذرد گشتاور آن نيرو نسبت به آن نقطه صفر است. ز- - -

به دو نيروى مساوى - موازى و مختلفالجهت زوجنيرو گَفته مىشود.

> ■ ■-। - - خ خصوصيات زوج نيرو

1- برآيند زوجنيرو صفر است؛

 نيـرو در فاصلـــٔ بين آن ها. (شـكل 9)
$\mathrm{M}=\mathrm{F} . \mathrm{d}$

شكل
 سـوم زوجنيـرو را اثبــات كرد.
الف) حول نقطؤ A

$$
\begin{aligned}
& \text { ب) حول نقطءٔ } \\
& \text { ج) با استفاده از خاصيت زوجنيرو } \\
& \text { حل: } \\
& M_{A}=90 \times 1+90 \times 9=1590 \text { N.m (الف) } \\
& M_{0}=90 \times 11+90 \times r=1490 \text { N.m (ب) } \\
& M=F . d=q \circ \times 1 f=1 r 9 \circ \text { N.m }(\tau
\end{aligned}
$$

جمع بندى نكات پودمان ((تحليل مكانيك بردارى):

 باشد. -بـراى تعييـن برآينـد چـنــد نيـرو از روش تجزيه بـه مؤلفههاى متعامد اسـتفاده مى شـود و مقــار برآيند از

$$
\begin{aligned}
& R=\sqrt{\left(R_{x}\right)^{r}+\left(R_{y}\right)^{r}} \quad \text { رابط }
\end{aligned}
$$

 حول همـان نقطه.
 - كشتاور زوج نيرو برابر است با حاصل ضرب يكى از نيروها در فاصلئ بين آنها.

فواليت
 كلاسی

گَشتاور نيروى P حول نقطهٔ A و B را بهدست آوريد.

ارزشيابى

 هنرسـتان وجود دارد.

الگَوى ارزشيابى پودمان تحليل مكانيكى بردارى

نمره	استاندارد (شاخص ها، داورى، نمر هدهى)	نتايج	استاندارد عملكرد	تكاليف عملكردى (شايستگى هان الـا
r	تجز يه بردارها روى محورهاى مختلف به روش ترسيمى و محاسباتى مرانى محاسبا ماسبه بر آيند سيستمههاى چنـدنيرويى و ور محاسبه گشتاور نيروها	بالاتر از حد انتظار	برآيند و گشتاور دو يا چند نیر ماشين حساب و روابط هندسى و مثلثاتى بهدست آورد.	كاربرد جمع بردارها
r	محاسبه جمع و ضرب بردار ها به كمك روابط هندسى و مثلثاتى	(كسب شايستگىى) حد انتظار		كاربرد ضرب بردارها
1	نمايش جمع و ضرب بردارها به صورت ترسيمى	پاييينتر از انتظار (عدم احر از شايستگّى)		
	نمره مستمر از ه ه			
	نمره شايستگى پو			
	Ko نمره هودمان از			

